
Notes on Amortization

D. Sleator

1. Introduction

A data structure is a way of representing information in a computer and a set of pro-
cedures for accessing and updating the information. These procedures for accessing
and updating the information are called the operations on the data structure.

There are two fundamentally different ways in which data structures are used.
They are used as part of an information retrieval system, and they are used as one
component of an algorithm whose purpose is to solve some other problem.

Why do we have data structures? In the first application the purpose of the data
structure is obvious, for the data structure itself is solving the problem that we want
to solve. In the second application, the reason for having data structures is not so
obvious. In this case our motivation for creating them is to aid in our conception of
the algorithm. By using a data structure as a component of an algorithm, we split the
problem of creating or expressing the algorithm into two parts. Once the interface
between these two parts has been specified, these two components of the problem can
be solved (or expressed) separately.

The interface between a data structure and the algorithm that uses it consists of
two parts:

1. A set of operations that allow the algorithm to access and update the data
structure.

2. Constraints that say how much time (or space) each operation is allowed to use
in order for the algorithm to perform with the desired efficiency.

The structure of this interface implies that the data structure must perform in an on-
line fashion, that is, it must perform the current operation before it knows what the
future operations will be. Furthermore, no assumptions are made about the pattern
of operations done by the algorithm. The data structure should have the desired
performance for any sequence.

This note describes a technique that has been used to design improved data struc-
tures, and to analyze their performance. These advances were not made by changing
the interface between the data structure and the algorithm that uses it. Rather, they
were made by allowing the data structure to take full advantage of the flexibility of
this interface.

The first observation is the following: Although the performance bounds on the
data structure are specified by the interface, these bounds do not have to be satisfied
by the data structure for every single operation. All that is actually needed is that
the cost of sequence of operations be bounded by the sum of the specified bounds.
An analysis of the worst case cost of a sequence of operations is called an amortized
analysis.

1



For example suppose a sequence of operations σ1, σ2, · · · , σn is to be appled to a
data structure. Say that the interface requires that the time taken by operation σi
be at most b(σi). In order for the data structure to satisfy the requirement of the
interface, it is not necessary that:

t(σi) ≤ b(σi),

rather, what is required is that

n
∑

i

t(σi) ≤
n
∑

i

b(σi).

If the data structure has this property, then the operation σi is said to take amortized
time b(σi). (This definition of the amortized time of an operation is slightly more
restricted than that used in the sequel. However, any bounds satisfying the above
inequality certainly satisfy our more liberal definition given below.)

The second important observation is that althought the data structure cannot
know the future operations, it is allowed to use the information it has about operations
that were done in the past. It turns out that a useful technique in constructing data
structures that are efficient in the amortized sense is to have the structure adjust
itself based on past requests. Informally, we call such a data structure self-adjusting .

Amortized analysis and self-adjustment have been used to devise a variety of effi-
cient new data structures. In the next section we illustrate the concepts of amortized
analysis with a simple example.

2. Amortized analysis: an example

To illustrate the concepts of amortized analysis I shall use a simple example. Suppose
that the cost of incrementing a binary number is the number of bits in it that change.
What is the cost of incrementing a binary number from 0 to n?

It is easy to see that on each increment operation the low order bit changes.
Thus, the number of times this bit changes is n. The 2’s bit changes on the second
increment operation, and on alternate subsequent operations, thus it changes a total
of bn/2c ≤ n/2 times. Similarly, the ith bit changes at most n/2i−1 times. Thus the
total cost of this sequence of increments is at most

n+
n

2
+
n

4
+ · · · = 2n.

Thus, by the definition of amortized cost, the increment operation has an amortized
cost of 2. Notice that some individual increment operation may cause blog nc bits to
change. 1

Another way to prove this result is my means of the banker’s view of amortization.
Suppose that each time a bit of the binary number changes it costs us one dollar.
Also, suppose that we maintain a bank account such that for each bit of the binary

1The symbol “log” denotes the binary logarithm.

2



number that is a 1 we keep a dollar in the account. Initially there is no money in the
account.

What happens when the binary number is incremented? A sequence of zero or
more 1’s all change to 0’s, and then a 0 changes to a 1. For each bit that changes
from a 1 to a 0, we take a dollar from the account to pay for it. For the bit that
changes from a 0 to a 1, we must pay for changing the bit, and we must also put a
dollar in the bank to maintain the relationship between the bank account and the
number. Thus our out of pocket cost to pay for the increment is exactly two dollars,
no matter how big the number is or how many carries occur. In a sequence of n
increment operations, our total cost is 2n dollars and we are left with a non-negative
bank account. Therefore the total cost of all the increments is at most 2n.

This technique can be applied in a much more general way. The idea is to make
a rule that says how much money must be kept in the bank as a function of the state
of the data structure. Then a bound is obtained on how much money is required to
pay for an operation and maintain the appropriate amount of money in the bank.

The physist’s view of amortization uses different terminology to describe the same
idea. This is the formulation I shall use in this course. A potential function Φ(s) is
a mapping from data state structure states to the reals. (This takes the place of the
bank account in the banker’s view.)

Consider a sequence of n operations σ1, σ2, . . . , σn the data structure. Let the
sequence of states through which the data structure passes be s0, s1, . . . , sn. Notice
that operation σi changes the state from si−1 to si. Let the cost of operation σi be
ci. Define the amortized cost aci of operation σi by the following formula:

aci = ci + Φ(si)− Φ(si−1), (1)

or
(amortized cost) = (actual cost) + (change in potential).

If we sum both sides of this equation over all the operations, we obtain the following
formula:

∑

i

aci =
∑

i

(ci + Φ(si)− Φ(si−1) = Φ(sn)− Φ(s0) +
∑

i

ci.

Rearranging we get
∑

i

ci = (
∑

i

aci) + Φ(s0)− Φ(sn). (2)

If Φ(s0) ≤ Φ(sn) (as will frequently be the case) we get

∑

i

ci ≤
∑

i

aci. (3)

Thus, if we can bound the amortized cost of each of the operations, and the final
potential is at least as large as the initial potential, then the bound we obtained for
the amortized cost applies to the actual cost.

We can now apply this technique to the problem of computing the cost of binary
counting. Let the potential Φ be the number of 1’s in the current number. Our first

3



goal is to show that with this potential the amortized cost of an increment operation
is 2.

Consider the ith increment operation that changes the number from i − 1 to i.
Let k be the number of carries that occur as a result of the increment. The cost of
the operation is k + 1. The change in potential caused by the operation is −k + 1.
(The number of bits that change from 1 to 0 is k and one bit changes from 0 to 1.)
Therefore the amortized cost of the operation is

aci = k + 1 + (−k + 1) = 2.

Since the final potential is more than the initial potential, we can apply inequality
(3) to obtain:

∑

i

ci ≤
∑

i

aci = 2n.

Notice that in this formulation, the definition of the amortized cost of an opera-
tion depends on the choice of the potential function. In fact, any choice of potential
function whatsoever defines an amortized cost of each operation. However, these
amortized bounds will not be useful unless Φ(s0) − Φ(sn) is also bounded appropri-
ately.

We have given two different definitions of amortized cost, one in Section 1, and
the other in equation 1. Which definition applies in a discussion will depend on the
context of the discussion. If we discuss amortized cost in the context of a potential
function, then the amortized cost is that defined by equation 1. If it is outside the
context of a potential function, then the meaning of amortized cost is that given in
Section 1.

Most of the art of doing an amortized analysis is in choosing the right potential
function. Once a potential function is chosen we must do two things:

1. Prove that with the chosen potential function, the amortized costs of the oper-
ations satisfy the desired bounds.

2. Bound the quantity Φ(s0)− Φ(sn) appropriately.

4


