No. of Printed Pages: 4

MCS-053

MCA (Revised)

Term-End Examination June, 201B

MCS-053: COMPUTER GRAPHICS AND

MULTIMEDIA

<i>Time</i> : 3 <i>I</i>	nours Maximum Marhs : 1	Maximum Marhs: 100	
_	nestion number 1 is compulsory. Attempt a hree questions [rom the rest.	ny	
1. (a)	Differentiate between 'Display buffer' and 'Frame buffer'. How is the frame buffer used to control the intensity of pixels? Use a suitable diagram/table to discuss the intensity control by frame buffer.	S	
<i>(b)</i>	Explain the Sutherland-Hodgman Polygon Clipping algorithm. Give a suitable diagram in support of your explanation.	5	
(c)	Write DDA algorithm. Use it to draw a line segment joining points (4, 8) and (8, 10).	5	
(d)	Compare and contrast between Perspective projection and Parallel projection. Give a		
1.666.053	suitable diagram for each.	5	
MCS-053	1 P.T.	O.	

(e)	Write the Rotational Transformation matrix for a 2D Euclidean system, for	
	clockwise and anticlockwise rotations by 8.	
	Also verify the statement "A clockwise	
	rotation by angle 8, followed by an anticlockwise rotation for the same angle 8,	
	leads to identity matrix."	5
(f)	Differentiate between Gouraud and Phong	
	shading. Give suitable diagrams and	_
	expressions for comparison.	5
(g)	Briefly describe any <i>two</i> of the following file formats :	5
	(i) jpeg	3
	(ii) tiff	
	(iii) gif	
(h)	Explain the Area Subdivision algorithm.	
	Use a suitable diagram to support your	_
	explanation.	5
(a)	What are the advantages of homogeneous	
	coordinate system over Euclidean coordinate system? Perform the following	
	transformations on the square (ABCD)	
	whose coordinates are $A(0, 0)$, $B(0, 2)$,	
	C(2, 0) and D(2, 2):	
	(i) Scale up the square ABCD by 2 units	
	in x-direction and 3 units in y-direction.	
	(11) Rotate ABCD by 45° in anticlockwise	
	direction.	
	(III) Translate ABCD by 3 units in x-	
	direction and 5 units in y-direction.	
	What are the final coordinates of vertices A, B, C and D of the square?	10
	A, D, C and D of the square !	10

2.

(b)	Determine the perspective transformation
	matrix when a point P(x, y, z) is projected
	on $z = 4$ plane, and "viewed from $E(-6, 0, 0)$.
	Draw a proper diagram to show the entire
	process of projection. 8
(c)	Give one similarity and one difference
	between orthographic projection and
	oblique projection. 2
(a)	Discuss the Cyrus-Beck Line Clipping
. ,	algorithm. Compare it with the
	Cohen-Sutherland Line Clipping algorithm.
	Derive the expression for the parameter (t)
	used for clipping the line using the
	Cyrus-Beck Line Clipping algorithm. 10
(b)	Write the Mid-point Circle algorithm.
	Compute the coordinate points of the circle
	drawn with centre at $(0, 0)$ and radius of
	5 units, using the Mid-point Circle
	algorithm. 5
(c)	Discuss the term Windowing
	Transformations. Use suitable diagrams
	and expressions in your discussion. 5
(a)	Prove the following properties of a Bezier
	curve: 5
	$(i) P(u=1) = P_{ri}$
	(ii) $P'(0) = n(P_1 - 0)$
(b)	What are Parametric Continuities ?
	Discuss each type of parametric continuity.
	Give mathematical expression and diagram
	for each type. 7

3

P.T.O.

3.

4.

MCS-053

(c)	Write the pseudocode of the Z-buffer	
	algorithm for visible surface detection.	
	What is the maximum number of objects	
	that can be handled by the Z-buffer	
	algorithm? Give two advantages and two	
	disadvantages of the Z-buffer algorithm.	8
(a)	How do we simulate acceleration in	
	animation ? Write the mathematical	
	function used to regulate frame spacing in	
	simulating the following:	
	(i) Zero Acceleration	
	(ii) Positive Acceleration	
	(iii) Negative Acceleration	
	(iv) Mixed Acceleration	
	Draw a graph to illustrate the frame	
	spacing regulation for each type of	
	simulated animation.	10
<i>(b)</i>	Write short notes on any two of the	
	following:	10
	(i) Ray Casting	
	(ii) Authoring Tools	
	(iii) Polygon Representation Methods	

5.

MCS-053 4 6,000