
CIS 501 (Martin/Roth): Instruction Set Architectures 1

CIS 501
Introduction to Computer Architecture

Unit 2: Instruction Set Architecture

CIS 501 (Martin/Roth): Instruction Set Architectures 2

Instruction Set Architecture (ISA)

• What is a good ISA?

• Aspects of ISAs

• RISC vs. CISC

• Implementing CISC: µISA

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CIS 501 (Martin/Roth): Instruction Set Architectures 3

Readings

• H+P

• Chapter 2

• Further reading:

• Appendix C (RISC) and Appendix D (x86)

• Available from web page

• Paper

• The Evolution of RISC Technology at IBM by John Cocke

• Much of this chapter will be “on your own reading”

• Hard to talk about ISA features without knowing what they do

• We will revisit many of these issues in context

CIS 501 (Martin/Roth): Instruction Set Architectures 4

What Is An ISA?

• ISA (instruction set architecture)
• A well-define hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage
locations supported by hardware

• Precise description of how to invoke, and access them

• No guarantees regarding

• How operations are implemented

• Which operations are fast and which are slow and when

• Which operations take more power and which take less

CIS 501 (Martin/Roth): Instruction Set Architectures 5

A Language Analogy for ISAs

• A ISA is analogous to a human language

• Allows communication

• Language: person to person

• ISA: hardware to software

• Need to speak the same language/ISA

• Many common aspects

• Part of speech: verbs, nouns, adjectives, adverbs, etc.

• Common operations: calculation, control/branch, memory

• Many different languages/ISAs, many similarities, many differences

• Different structure

• Both evolve over time

• Key differences: ISAs must be unambiguous

• ISAs are explicitly engineered and extended

CIS 501 (Martin/Roth): Instruction Set Architectures 6

RISC vs CISC Foreshadowing

• Recall performance equation:

• (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)

• Improve “instructions/program” with “complex” instructions

• Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)

• Improve “cycles/instruction” with many single-cycle instructions

• Increases “instruction/program”, but hopefully not as much

• Help from smart compiler

• Perhaps improve clock cycle time (seconds/cycle)

• via aggressive implementation allowed by simpler instructions

CIS 501 (Martin/Roth): Instruction Set Architectures 7

What Makes a Good ISA?

• Programmability

• Easy to express programs efficiently?

• Implementability

• Easy to design high-performance implementations?

• More recently

• Easy to design low-power implementations?

• Easy to design high-reliability implementations?

• Easy to design low-cost implementations?

• Compatibility

• Easy to maintain programmability (implementability) as languages
and programs (technology) evolves?

• x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII,
PentiumIII, Pentium4,…

CIS 501 (Martin/Roth): Instruction Set Architectures 8

Programmability

• Easy to express programs efficiently?

• For whom?

• Before 1985: human

• Compilers were terrible, most code was hand-assembled

• Want high-level coarse-grain instructions

• As similar to high-level language as possible

• After 1985: compiler

• Optimizing compilers generate much better code that you or I

• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly or not

CIS 501 (Martin/Roth): Instruction Set Architectures 9

Human Programmability

• What makes an ISA easy for a human to program in?

• Proximity to a high-level language (HLL)

• Closing the “semantic gap”

• Semantically heavy (CISC-like) insns that capture complete idioms

• “Access array element”, “loop”, “procedure call”

• Example: SPARC save/restore

• Bad example: x86 rep movsb (copy string)

• Ridiculous example: VAX insque (insert-into-queue)

• “Semantic clash”: what if you have many high-level languages?

• Stranger than fiction

• People once thought computers would execute language directly

• Fortunately, never materialized (but keeps coming back around)

CIS 501 (Martin/Roth): Instruction Set Architectures 10

Compiler Programmability

• What makes an ISA easy for a compiler to program in?

• Low level primitives from which solutions can be synthesized

• Wulf: “primitives not solutions”

• Computers good at breaking complex structures to simple ones

• Requires traversal

• Not so good at combining simple structures into complex ones

• Requires search, pattern matching (why AI is hard)

• Easier to synthesize complex insns than to compare them

• Rules of thumb

• Regularity: “principle of least astonishment”

• Orthogonality & composability

• One-vs.-all

CIS 501 (Martin/Roth): Instruction Set Architectures 11

Today’s Semantic Gap

• Popular argument

• Today’s ISAs are targeted to one language…

• Just so happens that this language is very low level

• The C programming language

• Will ISAs be different when Java/C# become dominant?

• Object-oriented? Probably not

• Support for garbage collection? Maybe

• Support for bounds-checking? Maybe

• Why?

• Smart compilers transform high-level languages to simple
instructions

• Any benefit of tailored ISA is likely small

CIS 501 (Martin/Roth): Instruction Set Architectures 12

Implementability

• Every ISA can be implemented

• Not every ISA can be implemented efficiently

• Classic high-performance implementation techniques

• Pipelining, parallel execution, out-of-order execution (more later)

• Certain ISA features make these difficult

– Variable instruction lengths/formats: complicate decoding

– Implicit state: complicates dynamic scheduling

– Variable latencies: complicates scheduling

– Difficult to interrupt instructions: complicate many things

CIS 501 (Martin/Roth): Instruction Set Architectures 13

Compatibility

• No-one buys new hardware… if it requires new software

• Intel was the first company to realize this

• ISA must remain compatible, no matter what

• x86 one of the worst designed ISAs EVER, but survives

• As does IBM’s 360/370 (the first “ISA family”)

• Backward compatibility

• New processors must support old programs (can’t drop features)

• Very important

• Forward (upward) compatibility

• Old processors must support new programs (with software help)

• New processors redefine only previously-illegal opcodes

• Allow software to detect support for specific new instructions

• Old processors emulate new instructions in low-level software

CIS 501 (Martin/Roth): Instruction Set Architectures 14

The Compatibility Trap

• Easy compatibility requires forethought

• Temptation: use some ISA extension for 5% performance gain

• Frequent outcome: gain diminishes, disappears, or turns to loss

– Must continue to support gadget for eternity

• Example: register windows (SPARC)

• Adds difficulty to out-of-order implementations of SPARC

• Details shortly

CIS 501 (Martin/Roth): Instruction Set Architectures 15

The Compatibility Trap Door

• Compatibility’s friends

• Trap: instruction makes low-level “function call” to OS handler

• Nop: “no operation” - instructions with no functional semantics

• Backward compatibility

• Handle rarely used but hard to implement “legacy” opcodes

• Define to trap in new implementation and emulate in software

• Rid yourself of some ISA mistakes of the past

• Problem: performance suffers

• Forward compatibility

• Reserve sets of trap & nop opcodes (don’t define uses)

• Add ISA functionality by overloading traps

• Release firmware patch to “add” to old implementation

• Add ISA hints by overloading nops

CIS 501 (Martin/Roth): Instruction Set Architectures 16

Aspects of ISAs

• VonNeumann model

• Implicit structure of all modern ISAs

• Format

• Length and encoding

• Operand model

• Where (other than memory) are operands stored?

• Datatypes and operations

• Control

• Overview only

• Read about the rest in the book and appendices

CIS 501 (Martin/Roth): Instruction Set Architectures 17

The Sequential Model

• Implicit model of all modern ISAs
• Often called VonNeuman, but in ENIAC before

• Basic feature: the program counter (PC)
• Defines total order on dynamic instruction

• Next PC is PC++ unless insn says otherwise

• Order and named storage define computation

• Value flows from insn X to Y via storage A iff…

• X names A as output, Y names A as input…

• And Y after X in total order

• Processor logically executes loop at left
• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

• Alternatives have been proposed…

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

CIS 501 (Martin/Roth): Instruction Set Architectures 18

Format

• Length

• Fixed length

• Most common is 32 bits

+ Simple implementation: compute next PC using only PC

– Code density: 32 bits to increment a register by 1?

– x86 can do this in one 8-bit instruction

• Variable length

– Complex implementation

+ Code density

• Compromise: two lengths

• MIPS16 or ARM’s Thumb

• Encoding

• A few simple encodings simplify decoder implementation

CIS 501 (Martin/Roth): Instruction Set Architectures 19

Example: MIPS Format

• Length

• 32-bits

• Encoding

• 3 formats, simple encoding

• Q: how many instructions can be encoded? A: 127

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) Rd(5)Rd(5) ShSh(5)(5) FuncFunc(6)(6)R-typeR-type

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) ImmedImmed(16)(16)I-typeI-type

Op(6)Op(6) Target(26)Target(26)J-typeJ-type

CIS 501 (Martin/Roth): Instruction Set Architectures 20

Operand Model: Memory Only

• Where (other than memory) can operands come from?

• And how are they specified?

• Example: A = B + C

• Several options

• Memory only
add B,C,A mem[A] = mem[B] + mem[C]

MEMMEM

CIS 501 (Martin/Roth): Instruction Set Architectures 21

Operand Model: Accumulator

• Accumulator: implicit single element storage
load B ACC = mem[B]

add C ACC = ACC + mem[C]

store A mem[A] = ACC

MEMMEM

ACCACC

CIS 501 (Martin/Roth): Instruction Set Architectures 22

Operand Model: Stack

• Stack: TOS implicit in instructions
push B stk[TOS++] = mem[B]

push C stk[TOS++] = mem[C]

add stk[TOS++] = stk[--TOS] + stk[--TOS]

pop A mem[A] = stk[--TOS]

MEMMEM

TOSTOS

CIS 501 (Martin/Roth): Instruction Set Architectures 23

Operand Model: Registers

• General-purpose register: multiple explicit accumulator
load B,R1 R1 = mem[B]

add C,R1 R1 = R1 + mem[C]

store R1,A mem[A] = R1

• Load-store: GPR and only loads/stores access memory
load B,R1 R1 = mem[B]

load C,R2 R2 = mem[C]

add R1,R2,R1 R1 = R1 + R2

store R1,A mem[A] = R1

MEMMEM

CIS 501 (Martin/Roth): Instruction Set Architectures 24

Operand Model Pros and Cons

• Metric I: static code size

• Number of instructions needed to represent program, size of each

• Want many implicit operands, high level instructions

• Good ! bad: memory, accumulator, stack, load-store

• Metric II: data memory traffic

• Number of bytes move to and from memory

• Want as many long-lived operands in on-chip storage

• Good ! bad: load-store, stack, accumulator, memory

• Metric III: cycles per instruction

• Want short (1 cycle?), little variability, few nearby dependences

• Good ! bad: load-store, stack, accumulator, memory

• Upshot: most new ISAs are load-store or hybrids

CIS 501 (Martin/Roth): Instruction Set Architectures 25

How Many Registers?

• Registers faster than memory, have as many as possible?
• No

• One reason registers are faster is that there are fewer of them

• Small is fast (hardware truism)

• Another is that they are directly addressed (no address calc)

– More of them, means larger specifiers

– Fewer registers per instruction or indirect addressing

• Not everything can be put in registers

• Structures, arrays, anything pointed-to

• Although compilers are getting better at putting more things in

– More registers means more saving/restoring

• Upshot: trend to more registers: 8 (x86)!32 (MIPS) !128 (IA32)

• 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

CIS 501 (Martin/Roth): Instruction Set Architectures 26

Register Windows

• Register windows: hardware activation records

• Sun SPARC (from the RISC I)

• 32 integer registers divided into: 8 global, 8 local, 8 input, 8 output

• Explicit save/restore instructions

• Global registers fixed

• save: inputs “pushed”, outputs ! inputs, locals zeroed

• restore: locals zeroed, inputs ! outputs, inputs “popped”

• Hardware stack provides few (4) on-chip register frames

• Spilled-to/filled-from memory on over/under flow

+ Automatic parameter passing, caller-saved registers

+ No memory traffic on shallow (<4 deep) call graphs

– Hidden memory operations (some restores fast, others slow)

– A nightmare for register renaming (more later)

CIS 501 (Martin/Roth): Instruction Set Architectures 27

Virtual Address Size

• What is a n-bit processor?
• Support memory size of 2n

• Alternative (wrong) definition: size of calculation operations

• Virtual address size
• Determines size of addressable (usable) memory

• Current 32-bit or 64-bit address spaces

• All ISAs moving to (if not already at) 64 bits

• Most critical, inescapable ISA design decision

• Too small? Will limit the lifetime of ISA

• May require nasty hacks to overcome (E.g., x86 segments)

• x86 evolution:

• 4-bit (4004), 8-bit (8008), 16-bit (8086), 20-bit (80286),

• 32-bit + protected memory (80386)

• 64-bit (AMD’s Opteron & Intel’s EM64T Pentium4)

CIS 501 (Martin/Roth): Instruction Set Architectures 28

Memory Addressing

• Addressing mode: way of specifying address

• Used in memory-memory or load/store instructions in register ISA

• Examples

• Register-Indirect: R1=mem[R2]

• Displacement: R1=mem[R2+immed]

• Index-base: R1=mem[R2+R3]

• Memory-indirect: R1=mem[mem[R2]]

• Auto-increment: R1=mem[R2], R2= R2+1

• Auto-indexing: R1=mem[R2+immed], R2=R2+immed

• Scaled: R1=mem[R2+R3*immed1+immed2]

• PC-relative: R1=mem[PC+imm]

• What high-level program idioms are these used for?

CIS 501 (Martin/Roth): Instruction Set Architectures 29

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) ImmedImmed(16)(16)I-typeI-type

Example: MIPS Addressing Modes

• MIPS implements only displacement

• Why? Experiment on VAX (ISA with every mode) found distribution

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

• 80% use small displacement or register indirect (displacement 0)

• I-type instructions: 16-bit displacement

• Is 16-bits enough?

• Yes? VAX experiment showed 1% accesses use displacement >16

• SPARC adds Reg+Reg mode

CIS 501 (Martin/Roth): Instruction Set Architectures 30

Two More Addressing Issues

• Access alignment: address % size == 0?
• Aligned: load-word @XXXX00, load-half @XXXXX0

• Unaligned: load-word @XXXX10, load-half @XXXXX1

• Question: what to do with unaligned accesses (uncommon case)?

• Support in hardware? Makes all accesses slow

• Trap to software routine? Possibility

• Use regular instructions

• Load, shift, load, shift, and

• MIPS? ISA support: unaligned access using two instructions

lwl @XXXX10; lwr @XXXX10

• Endian-ness: arrangement of bytes in a word

• Big-endian: sensible order (e.g., MIPS, PowerPC)

• A 4-byte integer: “00000000 00000000 00000010 00000011” is 515

• Little-endian: reverse order (e.g., x86)

• A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515

• Why little endian? To be different? To be annoying? Nobody knows

CIS 501 (Martin/Roth): Instruction Set Architectures 31

Control Instructions

• One issue: testing for conditions

• Option I: compare and branch insns

branch-less-than R1,10,target

+ Simple, – two ALUs: one for condition, one for target address

• Option II: implicit condition codes

subtract R2,R1,10 // sets “negative” CC

branch-neg target

+ Condition codes set “for free”, – implicit dependence is tricky

• Option III: condition registers, separate branch insns

set-less-than R2,R1,10

branch-not-equal-zero R2,target

– Additional instructions, + one ALU per, + explicit dependence

CIS 501 (Martin/Roth): Instruction Set Architectures 32

Example: MIPS Conditional Branches

• MIPS uses combination of options II/III
• Compare 2 registers and branch: beq, bne

• Equality and inequality only

+ Don’t need an adder for comparison

• Compare 1 register to zero and branch: bgtz, bgez, bltz, blez

• Greater/less than comparisons

+ Don’t need adder for comparison

• Set explicit condition registers: slt, sltu, slti, sltiu, etc.

• Why?

• More than 80% of branches are (in)equalities or comparisons to 0

• OK to take two insns to do remaining branches (MCCF)

CIS 501 (Martin/Roth): Instruction Set Architectures 33

Control Instructions II

• Another issue: computing targets
• Option I: PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Option II: Absolute

• Position independent outside procedure

• Used for procedure calls

• Option III: Indirect (target found in register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switches

• How far do you need to jump?

• Typically not so far within a procedure (they don’t get that big)

• Further from one procedure to another

CIS 501 (Martin/Roth): Instruction Set Architectures 34

MIPS Control Instructions

• MIPS uses all three
• PC-relative conditional branches: bne, beq, blez, etc.

• 16-bit relative offset, <0.1% branches need more

• Absolute jumps unconditional jumps: j

• 26-bit offset

• Indirect jumps: jr

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) ImmedImmed(16)(16)I-typeI-type

Op(6)Op(6) Target(26)Target(26)J-typeJ-type

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) Rd(5)Rd(5) ShSh(5)(5) FuncFunc(6)(6)R-typeR-type

CIS 501 (Martin/Roth): Instruction Set Architectures 35

Control Instructions III

• Another issue: support for procedure calls?

• Link (remember) address of calling insn + 4 so we can return to it

• MIPS

• Implicit return address register is $31

• Direct jump-and-link: jal

• Indirect jump-and-link: jalr

CIS 501 (Martin/Roth): Instruction Set Architectures 36

RISC and CISC

• RISC: reduced-instruction set computer
• Coined by Patterson in early 80’s

• Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801
(Cocke)

• Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer
• Term didn’t exist before “RISC”

• x86, VAX, Motorola 68000, etc.

• Religious war (one of several) started in mid 1980’s
• RISC “won” the technology battles

• CISC won the commercial war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel beat RISC at its own game

CIS 501 (Martin/Roth): Instruction Set Architectures 37

The Setup

• Pre 1980

• Bad compilers

• Complex, high-level ISAs

• Slow multi-chip micro-programmed implementations

• Vicious feedback loop

• Around 1982

• Advances in VLSI made single-chip microprocessor possible…

• Speed by integration, on-chip wires much faster than off-chip

• …but only for very small, very simple ISAs

• Compilers had to get involved in a big way

• RISC manifesto: create ISAs that…

• Simplify single-chip implementation

• Facilitate optimizing compilation

CIS 501 (Martin/Roth): Instruction Set Architectures 38

The RISC Tenets

• Single-cycle execution

• CISC: many multicycle operations

• Hardwired control

• CISC: microcoded multi-cycle operations

• Load/store architecture

• CISC: register-memory and memory-memory

• Few memory addressing modes

• CISC: many modes

• Fixed instruction format

• CISC: many formats and lengths

• Reliance on compiler optimizations

• CISC: hand assemble to get good performance

CIS 501 (Martin/Roth): Instruction Set Architectures 39

The CISCs

• DEC VAX (Virtual Address eXtension to PDP-11): 1977
• Variable length instructions: 1-321 bytes!!!

• 14 GPRs + PC + stack-pointer + condition codes

• Data sizes: 8, 16, 32, 64, 128 bit, decimal, string

• Memory-memory instructions for all data sizes

• Special insns: crc, insque, polyf, and a cast of hundreds

• Intel x86 (IA32): 1974
• “Difficult to explain and impossible to love”

• Variable length instructions: 1-16 bytes

• 8 special purpose registers + condition codes

• Data sizes: 8,16,32,64 (new) bit (overlapping registers)

• Accumulators (register and memory) for integer, stack for FP

• Many modes: indirect, scaled, displacement + segments

• Special insns: push, pop, string functions, MMX, SSE/2/3 (later)

CIS 501 (Martin/Roth): Instruction Set Architectures 40

The RISCs

• Many similar ISAs: MIPS, PA-RISC, SPARC, PowerPC, Alpha

• 32-bit instructions

• 32 registers

• 64-bit virtual address space

• Fews addressing modes (SPARC and PowerPC have more)

• Why so many? Everyone invented their own new ISA

• DEC Alpha (Extended VAX): 1990

• The most recent, cleanest RISC ISA

• 64-bit data (32,16,8 added only after software vendor riots)

• Only aligned memory access

• One addressing mode: displacement

• Special instructions: conditional moves, prefetch hints

CIS 501 (Martin/Roth): Instruction Set Architectures 41

Post-RISC

• Intel/HP IA64 (Itanium): 2000

• Fixed length instructions: 128-bit 3-operation bundles

• EPIC: explicitly parallel instruction computing

• 128 64-bit registers

• Special instructions: true predication, software speculation

• Every new ISA feature suggested in last two decades

• More later in course

CIS 501 (Martin/Roth): Instruction Set Architectures 42

The RISC Debate

• RISC argument [Patterson et al.]
• CISC is fundamentally handicapped

• For a given technology, RISC implementation will be better (faster)

• Current technology enables single-chip RISC

• When it enables single-chip CISC, RISC will be pipelined

• When it enables pipelined CISC, RISC will have caches

• When it enables CISC with caches, RISC will have next thing...

• CISC rebuttal [Colwell et al.]
• CISC flaws not fundamental, can be fixed with more transistors

• Moore’s Law will narrow the RISC/CISC gap (true)

• Good pipeline: RISC = 100K transistors, CISC = 300K

• By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is important (so true)

CIS 501 (Martin/Roth): Instruction Set Architectures 43

Current Winner (units sold): ARM

• ARM (Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).

• 1.2 billion units sold in 2004

• More than half of all 32/64-bit CPUs sold

• Low-power and embedded devices (iPod, for example)

• 32-bit RISC ISA

• 16 registers

• Many addressing modes (for example, auto increment)

• Condition codes, each instruction can be conditional

• Multiple compatible implementations

• Intel’s X-scale (original design was DEC’s, bought by Intel)

• Others: Freescale (was Motorola), IBM, Texas Instruments, Nintendo,
STMicroelectronics, Samsung, Sharp, Philips, etc.

• “Thumb” 16-bit wide instructions

• Increase code density

CIS 501 (Martin/Roth): Instruction Set Architectures 44

Current Winner (revenue): x86

• x86 was first 16-bit chip by ~2 years
• IBM put it into its PCs because there was no competing choice

• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel sells the most non-embedded processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given equal performance compatibility wins…

• So Intel sells the most non-embedded processors…

• AMD as a competitor keeps pressure on x86 performance

• Moore’s law has helped Intel in a big way
• Most engineering problems can be solved with more transistors

CIS 501 (Martin/Roth): Instruction Set Architectures 45

Intel’s Trick: RISC Inside

• 1993: Intel wanted out-of-order execution in Pentium Pro

• OOO was very hard to do with a coarse grain ISA like x86

• Their solution? Translate x86 to RISC uops in hardware

push $eax

is translated (dynamically in hardware) to
store $eax [$esp-4]

addi $esp,$esp,-4

• Processor maintains x86 ISA externally for compatibility

• But executes RISC µISA internally for implementability

• Translation itself is proprietary, but 1.6 uops per x86 insn

• Given translator, x86 almost as easy to implement as RISC

• Result: Intel implemented OOO before any RISC company

• Idea co-opted by other x86 companies: AMD and Transmeta

• The one company that resisted (Cyrix) couldn’t keep up

CIS 501 (Martin/Roth): Instruction Set Architectures 46

Transmeta’s Take: Code Morphing

• Code morphing: x86 translation performed in software

• Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere

• Only “code morphing” translation software written in native ISA

• Native ISA is invisible to applications, OS, even BIOS

• Different Crusoe versions have (slightly) different ISAs: can’t tell

• How was it done?

• Code morphing software resides in boot ROM

• On startup boot ROM hijacks 16MB of main memory

• Translator loaded into 512KB, rest is translation cache

• Software starts running in interpreter mode

• Interpreter profiles to find “hot” regions: procedures, loops

• Hot region compiled to native, optimized, cached

• Gradually, more and more of application starts running native

CIS 501 (Martin/Roth): Instruction Set Architectures 47

Emulation/Binary Translation

• Compatibility is still important but definition has changed

• Less necessary that processor ISA be compatible

• As long as some combination of ISA + software translation layer is

• Advances in emulation, binary translation have made this possible

• Binary-translation: transform static image, run native

• Emulation: unmodified image, interpret each dynamic insn

• Typically optimized with just-in-time (JIT) compilation

• Examples

• FX!32: x86 on Alpha

• IA32EL: x86 on IA64

• Rosetta: PowerPC on x86

• Downside: performance overheads

CIS 501 (Martin/Roth): Instruction Set Architectures 48

Virtual ISAs

• Machine virtualization

• Vmware & Xen: x86 on x86 (what is this good for?)

• Old idea (from IBM mainframes), big revival in the near future

• Java and C# use an ISA-like interface

• JavaVM uses a stack-based bytecode

• C# has the CLR (common language runtime)

• Higher-level than machine ISA

• Design for translation (not direct execution)

• Goals:

• Portability (abstract away the actual hardware)

• Target for high-level compiler (one per language)

• Source for low-level translator (one per ISA)

• Flexibility over time

CIS 501 (Martin/Roth): Instruction Set Architectures 49

ISA Research

• Compatibility killed ISA research for a while

• But binary translation/emulation has revived it

• Current projects

• “ISA for Instruction-Level Distributed Processing” [Kim,Smith]

• Multi-level register file exposes local/global communication

• “DELI: Dynamic Execution Layer Interface” [HP]

• An open translation/optimization/caching infrastructure

• “WaveScalar” [Swanson,Shwerin,Oskin]

• The vonNeumann alternative

• “DISE: Dynamic Instruction Stream Editor” [Corliss,Lewis,Roth]

• A programmable µISA: µISA/binary-rewriting hybrid

• Local project: http://…/~eclewis/proj/dise/

CIS 501 (Martin/Roth): Instruction Set Architectures 50

Summary

• What makes a good ISA

• {Programm|Implement|Compat}-ability

• Compatibility is a powerful force

• Compatibility and implementability: µISAs, binary translation

• Aspects of ISAs

• CISC and RISC

• Next up: caches

